Euclid’s *Elements*
Book I

Definitions

1. A *point* is that which has no part.
2. A *line* is breadthless length.
3. The extremities of a line are points.
4. A *straight line* is a line which lies evenly with the points on itself.
5. A *surface* is that which has length and breadth only.
6. The extremities of a surface are lines.
7. A *plane surface* is a surface which lies evenly with the straight lines on itself.
8. A *plane angle* is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line.
9. And when the lines containing the angle are straight, the angle is called *rectilineal*.
10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is *right*, and the straight line standing on the other is called a *perpendicular* to that on which it stands.
11. An *obtuse angle* is an angle greater than a right angle.
12. An *acute angle* is an angle less than a right angle.
13. A *boundary* is that which is an extremity of anything.
14. A *figure* is that which is contained by any boundary or boundaries.
15. A *circle* is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure are equal to one another;
16. And the point is called the *centre* of the circle.
17. A *diameter* of the circle is any straight line drawn through the centre and terminated in both directions by the circumference of the circle, and such a straight line also bisects the circle.

Euclid’s definitions, postulates, and common notions—if Euclid is indeed their author—were not numbered, separated, or italicized until translators began to introduce that practice. The Greek text, however, as far back as the 1533 first printed edition, presented the definitions in a running narrative, more as a preface discussing how the terms would be used than as an axiomatic foundation for the propositions to come. We follow Heath’s formatting here. —Ed.
18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And the centre of the semicircle is the same as that of the circle.

19. Rectilineal figures are those which are contained by straight lines, trilateral figures being those contained by three, quadrilateral those contained by four, and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an obtuse-angled triangle that which has an obtuse angle, and an acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled; an oblong that which is right-angled but not equilateral; a rhombus that which is equilateral but not right-angled; and a rhomboid that which has its opposite sides and angles equal to one another but is neither equilateral nor right-angled. And let quadrilaterals other than these be called trapezia.

23. Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction.

Postulates

Let the following be postulated:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

Common Notions

1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.
Proposition 1

On a given finite straight line to construct an equilateral triangle.

Let AB be the given finite straight line.

Thus it is required to construct an equilateral triangle on the straight line AB.

With centre A and distance AB let the circle BCD be described; [Post. 3] again, with centre B and distance BA let the circle ACE be described; [Post. 3] and from the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined. [Post. 1]

Now, since the point A is the centre of the circle CDB, AC is equal to AB. [Def. 15]

Again, since the point B is the centre of the circle CAE, BC is equal to BA. [Def. 15]

But CA was also proved equal to AB; therefore each of the straight lines CA, CB is equal to AB.

And things which are equal to the same thing are also equal to one another; [C.N. 1] therefore CA is also equal to CB.

Therefore the three straight lines CA, AB, BC are equal to one another.

Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight line AB.

Being what it was required to do.

Proposition 2

To place at a given point [as an extremity] a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line.

Thus it is required to place at the point A [as an extremity] a straight line equal to the given straight line BC.

From the point A to the point B let the straight line AB be joined; [Post. 1] and on it let the equilateral triangle DAB be constructed. [I. 1]

1. Square brackets indicate material which Heath identified as having been supplied by him, adding clarification but not literally present in the Greek text. —Ed.
Let the straight lines AE, BF be produced in a straight line with DA, DB; [Post. 2]
with centre B and distance BC let the circle CGH be described; [Post. 3]
and again, with centre D and distance DG let the circle GKL be described. [Post. 3]

Then, since the point B is the centre of the circle CGH,

$$BC \text{ is equal to } BG.$$

Again, since the point D is the centre of the circle GKL,

$$DL \text{ is equal to } DG.$$

And in these DA is equal to DB;
therefore the remainder AL is equal to the remainder BG. [C.N. 3]

But BC was also proved equal to BG;
therefore each of the straight lines AL, BC is equal to BG.

And things which are equal to the same thing are also equal to one another; [C.N. 1]
therefore AL is also equal to BC.

Therefore at the given point A the straight line AL is placed equal to the given straight line BC.

Being what it was required to do.

Proposition 3

Given two unequal straight lines, to cut off from the greater a straight line equal to the less.

Let AB, C be the two given unequal straight lines, and let AB be the greater of them.

Thus it is required to cut off from AB the greater a straight line equal to C the less.

At the point A let AD be placed equal to the straight line C; [I. 2]
and with centre A and distance AD let the circle DEF be described. [Post. 3]

Now, since the point A is the centre of the circle DEF,

$$AE \text{ is equal to } AD.$$ [Def. 15]

But C is also equal to AD.

Therefore each of the straight lines AE, C is equal to AD;
so that AE is also equal to C. [C.N. 1]

Therefore, given the two straight lines AB, C, from AB the greater AE has been cut off equal to C the less.

Being what it was required to do.
Proposition 4

If two triangles have the two sides equal to two sides respectively, and have the angles contained by the equal straight lines equal, they will also have the base equal to the base, the triangle will be equal to the triangle, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend.

Let ABC, DEF be two triangles having the two sides AB, AC equal to the two sides DE, DF respectively, namely AB to DE and AC to DF, and the angle BAC equal to the angle EDF.

I say that the base BC is also equal to the base EF, the triangle ABC will be equal to the triangle DEF, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend, that is, the angle ABC to the angle DEF, and the angle ACB to the angle DFE.

For, if the triangle ABC be applied to the triangle DEF, and if the point A be placed on the point D and the straight line AB on DE, then the point B will also coincide with E, because AB is equal to DE.

Again, AB coinciding with DE, the straight line AC will also coincide with DF, because the angle BAC is equal to the angle EDF; hence the point C will also coincide with the point F, because AC is again equal to DF.

But B also coincided with E;

hence the base BC will coincide with the base EF, and will be equal to it. [C.N. 4]

Thus the whole triangle ABC will coincide with the whole triangle DEF, and will be equal to it. [C.N. 4]

And the remaining angles will also coincide with the remaining angles and will be equal to them,

the angle ABC to the angle DEF, and the angle ACB to the angle DFE. [C.N. 4]

Therefore etc.

Q.E.D.²

Proposition 5

In isosceles triangles the angles at the base are equal to one another, and, if the equal straight lines be produced further, the angles under the base will be equal to one another.

² Q.E.D. stands for the Latin quod erat demonstrandum, that which was to have been demonstrated. The use of this and of Q.E.F., quod erat faciendum, that which was to have been done, is explained in the introduction. —Ed.
Let ABC be an isosceles triangle having the side AB equal to the side AC; and let the straight lines BD, CE be produced further in a straight line with AB, AC. [Post. 2]

I say that the angle ABC is equal to the angle ACB, and the angle CBD to the angle BCE.

Let a point F be taken at random on BD; from AE the greater let AG be cut off equal to AF the less; [I. 3] and let the straight lines FC, GB be joined. [Post. 1]

Then, since AF is equal to AG and AB to AC,

the two sides FA, AC are equal to the two sides GA, AB, respectively;

and they contain a common angle, the angle FAG.

Therefore the base FC is equal to the base GB,
and the triangle AFC is equal to the triangle AGB,

and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend,

that is, the angle ACF to the angle ABG,
and the angle AFC to the angle AGB. [I. 4]

And, since the whole AF is equal to the whole AG, and in these AB is equal to AC,

the remainder BF is equal to the remainder CG.

But FC was also proved equal to GB;

therefore the two sides BF, FC are equal to the two sides CG, GB respectively;

and the angle BFC is equal to the angle CGB,

while the base BC is common to them;

therefore the triangle BFC is also equal to the triangle CGB, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend;

therefore the angle FBC is equal to the angle GCB,
and the angle BCF to the angle CBG.

Accordingly, since the whole angle ABG was proved equal to the angle ACF,

and in these the angle CBG is equal to the angle BFC,
the remaining angle ABC is equal to the remaining angle ACB;

and they are at the base of the triangle ABC.

But the angle FBC was also proved equal to the angle GCB;

and they are under the base.

Therefore etc.

Q.E.D.

Proposition 6

If in a triangle two angles be equal to one another, the sides which subtend the equal angles will also be equal to one another.

Let ABC be a triangle having the angle ABC equal to the angle ACB; I say that the side AB is also equal to the side AC.
For, if AB is unequal to AC, one of them is greater.

Let AB be greater;
and from AB the greater let DB be cut off equal to AC the less;
let DC be joined.

Then, since DB is equal to AC,
and BC is common,
the two sides DB, BC are equal to the two sides AC, CB respectively;
and the angle DBC is equal to the angle ACB;
therefore the base DC is equal to the base AB,
and the triangle DBC will be equal to the triangle ACB, the less to the greater:
which is absurd.

Therefore AB is not unequal to AC;
it is therefore equal to it.

Therefore etc.

Q.E.D.

Proposition 7

Given two straight lines constructed on a straight line [from its extremities] and meeting in a point, there cannot be constructed on the same straight line [from its extremities], and on the same side of it, two other straight lines meeting in another point and equal to the former two respectively, namely each to that which has the same extremity with it.

For, if possible, given two straight lines AC, CB constructed on the straight line AB and meeting at the point C, let two other straight lines AD, DB be constructed on the same straight line AB, on the same side of it, meeting in another point D and equal to the former two respectively, namely each to that which has the same extremity with it, so that CA is equal to DA which has the same extremity A with it,
and CB to DB which has the same extremity B with it;
and let CD be joined.

Then, since AC is equal to AD,
the angle ACD is also equal to the angle ADC; [I. 5]
therefore the angle ADC is greater than the angle DCB;
therefore the angle CDB is much greater than the angle DCB.

Again, since CB is equal to DB,
the angle CDB is also equal to the angle DCB.

But it was also proved much greater than it:
which is impossible.

Therefore etc.

Q.E.D.